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ABSTRACT

We examine the temperature structure of static coronal active region loops in regimes where thermal

conductive transport is driven by Coulomb collisions, by turbulent scattering, or by a combination of the

two. (In the last case collisional scattering dominates the heat transport at lower levels in the loop where
temperatures are low and densities are high, while turbulent scattering dominates the heat transport

at higher temperatures/lower densities.) Temperature profiles and their corresponding differential

emission measure distributions are calculated and compared to observations, and earlier scaling laws

relating the loop apex temperature and volumetric heating rate to the loop length and pressure are

revisited. Results reveal very substantial changes, compared to the wholly collision-dominated case,
to both the loop scaling laws and the temperature/density profiles along the loop. They also show

that the well-known excess of differential emission measure at relatively low temperatures in the loop

may be a consequence of for by the flatter temperature gradients (and so increased amount of material

within a specified temperature range) that results from the predominance of turbulent scattering in
the upper regions of the loop.

1. INTRODUCTION

On a variety of grounds, both theoretical and observational, it is becoming increasingly clear that turbulence plays an

important role in determining the structure of the active solar atmosphere. Turbulent flows are a natural consequence

of the high Reynolds number in the solar corona (e.g., Priest 2014), and some form of turbulence on the micro-

scale is necessary to create a plasma resistivity sufficiently large to rapidly release energy over large spatial scales
during the impulsive phase of solar flares (e.g., Coppi & Friedland 1971). Magnetohydrodynamic (MHD) turbulence

(i.e., stochastic motions within the magnetized plasma) is a leading candidate for transferring energy released in

the primary (magnetic reconnection) energy release site into the production of the energetic particles that are the

hallmark of the impulsive phase of a solar flare (e.g., Larosa & Moore 1993; Miller et al. 1996; Petrosian 2012); this

transfer of energy generally proceeds via the turbulent cascade of energy to progressively smaller scales, eventually
dissipating at the particle level. EUV and soft X ray spectral lines observed during flares frequently have a width that

is significantly in excess of the thermal Doppler width (Antonucci et al. 1982; Alexander 1990; Mariska 1992; Peter

2010; De Pontieu et al. 2015) and it is generally accepted that such broadening is strong evidence for the presence of

micro-turbulent (Antonucci et al. 1982; Mariska 1992; Peter 2010) and/or macro-turbulent (Mariska 1992; Peter 2010)
flows. Cotemporaneous observations using multiple instruments have shown (Kontar et al. 2017) that hydrodynamic

turbulence is not only located near the site of flare primary energy release, but also has a sufficient energy content to

play a major role in the transfer of energy from the primary magnetic reconnection into other manifestations of the

flare, such as accelerated nonthermal particles.

Even so-called “static” active region loops are currently believed to be heated by a canonical (Parker 1988) pro-
cess involving the creation of many small current sheets in the corona, with a repeat time that is short relative to

the cooling time; such a coronal heating scenario requires some anomalous microscale process to generate a large

enough plasma resistivity to dissipate energy on spatial scales of ∼1 Mm. Antolin et al. (2021) have detected the

bidirectional jets (“nanojets”) predicted to be associated with reconnection in small-scale current sheets (nanoflares),
and Bahauddin et al. (2021) found excess line broadenings in the vicinity of small-scale reconnection events, with a

dependence on ion species that was consistent with ion-cyclotron turbulence. Even if heating does not originate from

small-scale reconnection events but instead is purely wave-related (e.g., via oppositely propagating Alfvén waves) then

turbulence is still required to dissipate energy at the interacting wave fronts.
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As noted by several authors (e.g., Schmelz et al. 2014; Ryan et al. 2013), the observed cooling times of active region

and post-flare loops are significantly greater than those predicted by conventional energy transport models that involve

collision-dominated (Spitzer 1962) conduction. This has been taken as evidence for continuous ongoing small-scale

heating of such loops, but also (as discussed by Bian et al. 2016) may be indicative of a suppressed thermal conductive
flux, as might be appropriate to an environment in which thermal conduction is driven by turbulent, rather than

collisional, scattering.

In summary, the presence of turbulence is not necessarily restricted to flaring regions; it is also likely that a significant

level of turbulence is present in steady-state active region loops. This presents a compelling rationale to consider the

effect of turbulence on the thermodynamic structure of such loops, which is the purpose of the present work.
Considerable progress in our understanding of the structure of coronal loops has been made since the seminal work

of Rosner et al. (1978), based on Skylab ATM data. In particular, a considerable body of work has been carried

out to determine the degree to which coronal loops can be considered as a single flux tube or as a tangled set of

thermally isolated “strands.” Warren et al. (2008) presented observations from the Hinode EUV Imaging Spectrometer
(EIS; Culhane et al. 2007) of localized regions near the top of several coronal loop structures. Both delta-function

(i.e., isothermal) and Gaussian fits to the differential emission measure (DEM) profile were attempted, and it was

concluded that an isothermal fit was in general not justified, and hence that these observations “lend support to the

nonequilibrium, multithread models.” It should be noted that these DEM profiles reflect temperature variations both

parallel and perpendicular to the guiding magnetic field (although the selection of pixels near the apex of the loop
structures presumably limited the former), and that the use of a Gaussian profile for the DEM distribution did not

allow for the identification of higher temperature (e.g., soft X-ray) components in the loop.

Schmelz et al. (2001) used results from the SoHO Coronal Diagnostics Spectrometer (CDS; Harrison et al. 1995)

and Yohkoh Soft X-Ray Telescope (SXT; Golub et al. 2007) to construct the DEM by using a manual iterative
method involving forward-fitting a more general form than the Gaussian profile used by Warren et al. (2008). They

concluded that “the temperature distributions are clearly inconsistent with isothermal plasma along either the line

of sight or the length of the loop.” The DEM distributions obtained were peaked at a value logT ≃ 6.25, with a

half-width of ∆ logT ≃ ±0.25. Further observations of active region loops using the Hinode EIS was carried out by

Tripathi et al. (2009), who used the “EM Loci” method (essentially, a map of intensity divided by the product of the
species abundance and line emissivity function G(T )) to delineate loop structures. They concluded that the overall

structure of coronal loops becomes less defined (“fuzzier”) at higher temperatures and that the loops are “almost

isothermal along the line of sight.” However, they also concluded that the filling factors are significantly less than

unity, consistent with a multi-strand model.
Schmelz et al. (2005) used observations of a coronal loop on the solar limb, observed by the SoHO CDS, to deduce

that “the plasma was multithermal, both along the length of the loop and along the line of sight.” Noting that other

authors had obtained very different results, using data from different instruments (such as the Transition Region and

Coronal Explorer (TRACE; Handy et al. 1999), they suggested that “a variety of temperature structures may be

present within loops.” A later paper (Schmelz et al. 2007) used simultaneous CDS observations of two loops located
side-by-side on the solar disk, with all pixels in both loops visible within the CDS slit. Both forward-fitting EM

Loci, and an automated inversion analysis that represents the DEM profile as a series of spline knots (Warren 2005)

showed that one loop was consistent with a delta-function DEM (i.e., was indistinguishable from isothermal), while

the other loop required a broad DEM , and so not consistent with an isothermal plasma. Schmelz et al. (2008) used
observations taken on 2007 May 1 using the Hinode EIS to show that the observed intensities were consistent both

with a single-peaked DEM (i.e., isothermal) and a double-peaked DEM (i.e., a sum of two nearly isothermal loops).

It was noted, however, that the broadening of each of these components was such that they could not “simply represent

two isothermal strands of the EIS loop or two isothermal loops along the line of sight,” but “could, however, represent

either two dominant ensembles of strands for the observed EIS loop or the dominant ensemble of strands for two
individual loops along the line of sight.” Winebarger et al. (2011) also found that the DEM profile was “broad and

peaked around 3 MK,” but also (Winebarger et al. 2012) noted that a “blind spot” exists in temperature-emission

measure space for the combined Hinode EIS and XRT observations they used, so that this data set is insensitive to

plasma with temperatures greater than ≃ 6 MK.
In Schmelz et al. (2009), observations of three different loops were carried out under a Joint Observing Program

involving both the TRACE and CDS instruments, which had been noted in Schmelz et al. (2005) to have yielded

contradictory results. The introduction to that paper succinctly summarized the isothermal/multithermal dilemma:
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“For example, the loops analyzed by Del Zanna (2003) and Del Zanna & Mason (2003) were isothermal along the line of

sight and had a temperature gradient along their length, but the one analyzed by Brković et al. (2002) was isothermal

in both directions. The loop analyzed by Schmelz et al. (2001) and Schmelz & Martens (2006) was multithermal

along the line of sight, with a temperature distribution that increased as a function of loop height.” It was found
in Schmelz et al. (2009) that data from both instruments supported an isothermal model for one of the loops and

a multithermal model for another, but that results for the other two loops were not as clear, due to complicating

observational factors such as overlapping structures in the field of view. Schmelz et al. (2009) concluded that the

answer to the question “Are Coronal Loops Isothermal or Multithermal?” was a rather perplexing “yes.”

Schmelz et al. (2010b) (see also Schmelz et al. 2011b) applied Monte Carlo based, iterative forward fitting DEM
algorithms to data from the Hinode XRT and EIS instruments, and found that the observations were consistent with a

DEM profile with a peak at logT ≃ 6.5 and a fairly narrow half-width ∆ logT ≃ 0.25 (similar to the results obtained

by Schmelz et al. 2001). They concluded that “at least some loops are not consistent with isothermal plasma, and

therefore cannot be modeled with a single flux tube and must be multi-stranded.”
The launch of the Solar Dynamics Observatory and its high-spatial-resolution Atmospheric Imaging Assembly (AIA;

Lemen et al. 2012) with several different wavelength filters, representing a wide variety of line formation temperatures,

opened up a new era in the interpretation of loop structures. Schmelz et al. (2010a) reported their analysis of a

loop observed by AIA on 2010 August 3. Figure 4 of that paper shows the ratios of model-to-observational fluxes in

six different AIA spectral channels, and shows convincingly that while an extended, but relatively narrow (logT ≃
6.35;∆ logT ≃ 0.25) DEM profile could straightforwardly account for the observations in each AIA channel, a delta-

function DEM profile (i.e., isothermal plasma) could not, with model-to-observation ratios ranging from less than

unity to almost ten in different channels. The width of the DEM profile obtained was consistent with the previous

results of Schmelz et al. (2001) and Schmelz et al. (2010b). Schmelz et al. (2011a) then focused on a dozen relatively
cool loops that are prominent in the 171 Å channel of AIA, which has a peak response temperature of logT ≃ 5.8.

They found that one-third of the loops observed had narrow temperature distributions, consistent with isothermal

plasma, while other loops had DEM distributions with centroids around logT ≃ 6.0− 6.2 and half-widths ∆ log T up

to ≃ 0.4, somewhat broader than previously obtained by Schmelz et al. (2001, 2010a,b). This analysis was extended

to loops prominent in the 211 Å channel by Schmelz et al. (2011c), which has a higher peak response temperature
(logT ≃ 6.3). Results were inconclusive, however, because one of the AIA channels (at 131 Å ) contains Fe VII

emission not only from relatively cool (log T ≃ 5.7) material, but also from Fe XX and Fe XXIII lines, which are

formed at much higher temperatures (log T ≃ 7.2). Further, analysis excluding the problematic 131 Å data proved to

be inadequate to usefully constrain the DEM profile. Using improved atomic data from CHIANTI 7.1, (Schmelz et al.
2013a) were able to construct DEM profiles for the same set of loops; these profiles (their Figure 4) were roughly

Gaussian in (logT, logDEM) space, with peaks around logT ≃ 6.0 and standard deviations ∆ logT ≃ 0.3. Similar

results (their Figure 8) were reported by Schmelz et al. (2013b) using Hinode EIS and XRT data. Pursuing this

further, Schmelz et al. (2014) used data from all three instruments (Hinode XRT, Hinode EIS, and SDO AIA) to show

that cooler loops tend to have narrower DEM widths.
The essential results of the above papers are summarized in the “Coronal Loop Inventory Project” papers of

Schmelz et al. (2015) and Schmelz et al. (2016). Basically, the DEM of coronal loops, while it can be consistent

with an “isothermal” delta-function, may also be “multithermal.” Thus, in general, a loop must be considered as a

collection of individual “strands,” each with its own one-dimensional field-aligned temperature profile. Using the sub-
orbital rocket-borne Hi-C (Kobayashi et al. 2014) instrument, Cirtain et al. (2013) have discovered direct observational

evidence for the presence of such finely braided loop “strands.”

Given this observational background, it must nevertheless be noted that even for the “multithermal” case of a

heterogeneous cross-field temperature structure, or more generally, when the three-dimensional nature of an ensemble of

loops is taken into account (Aschwanden et al. 1999; Bradshaw & Viall 2016; Barnes et al. 2019, 2021), the temperature
and density structure along the strand is still ubiquitously modeled by a one-dimensional energy balance model, as

originally presented by Rosner et al. (1978). We therefore here consider the influence of turbulence on the temperature

(and DEM) structure of loops through the modeling of individual one-dimensional strands; convolution of these results

with a suitable cross-field representation of density and peak temperature may then be used to construct model “loops.”
Of particular note in the context of the present work are the works by Buchlin et al. (2007) and Guo et al. (2019),

who modeled the role of turbulence in the heating of coronal loops, the latter by invoking turbulence generated by the

Kelvin-Helmholtz instability associated with the interaction of multiple strands within a loop.
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The presence of microturbulence has a very significant effect on the plasma transport coefficients and thus on

the transport of particles and their associated momentum and energy fluxes (Bian et al. 2016). Modeling using the

enthalpy-based thermal evolution of loops (EBTEL; Klimchuk et al. 2008; Bradshaw & Cargill 2010; Cargill et al.

2012a,b) code has shown (Bian et al. 2018) that suppression of heat conduction by turbulence can help explain the
anomalously long cooling times observed (Moore et al. 1980; Ryan et al. 2013) in post-flare loops, reducing (but not

necessarily eliminating) the level of heating necessary in the post-impulsive phase of a flare. Turbulence also affects the

parallel thermoelectric transport coefficients (κ, α, β, σ) that appear in the relations (Bian et al. 2016) connecting the

heat flux q and electrical current density j to the parallel temperature gradient dT/dz and the local parallel electric

field E‖:

(

q

j

)

=

(

−κ −α

β σ

)(

dT
dz

E‖

)

. (1)

In general, all four coefficients scale approximately as 1/R, where the suppression factor R is the ratio of the collisional

to turbulent mean free paths for electrons moving at the local thermal speed.
As explained by Bradshaw et al. (2019), any turbulence-related reduction in the thermal conduction coefficient

κ acts to fundamentally change the scaling laws (Rosner et al. 1978) that relate the temperature and volumetric

heating rate in a static active region coronal loop to its density and length. For example, if the turbulent scattering

mean free path λT is taken to be a constant, independent of both density and velocity, the resulting much weaker

temperature dependence of the thermal conduction coefficient, compared to that associated with collisional scattering
(Spitzer 1962), leads to a temperature gradient that is more uniform over the loop. Accordingly, it is now the lower

temperature regions, with their correspondingly higher densities, that dominate the overall energy balance, so that

the loop scaling laws now involve not just the peak temperature Tmax but also the loop base temperature To. The

effects of turbulence have an even more profound effect on the scaling laws for dynamic loops, effectively limiting
(Bradshaw & Emslie 2020) the speed of any flows generated.

Such a reduction in the parallel conductive heat transport coefficient κ would be expected to result in significant

changes to the temperature/height and density/height profiles within the loop, that in turn determine the differential

emission measure vs. temperature profile and so the emissivity properties of the loop plasma. In this work we therefore

explore beyond the scaling law results of (Bradshaw et al. 2019) to consider (Section 2) the temperature profiles of the
loops when the thermal conduction term in the steady-state energy equation is dominated by turbulent, rather than

collisional (see Martens 2010), transport. (This more precise analysis also enables us to refine the approximate scaling

laws obtained by Bradshaw et al. (2019).) Then, recognizing that the collisional mean free path is both temperature-

and density-dependent, and hence that the relative importance of collisional and turbulent transport varies with
position along an active region coronal loop, we then consider a hybrid model formed by juxtaposing a turbulence-

dominated model at high temperatures with a collision-dominated model at low temperatures. We further pursue such

hybrid modeling by considering a numerical treatment in which the ratio of collisional to turbulent scattering mean

free paths evolves continuously with position along the loop.

Our results show that including the effects of turbulent scattering (whether throughout the entire loop or only in
the high-temperature regions) produces flatter temperature gradients, and so larger differential emission measures

(Section 3), than for a loop in which collisional transport prevails throughout. Comparison of these model predictions

with observations indicates much better agreement than for collision-dominated models, and hence that turbulence

indeed plays a significant role in determining the thermodynamic structure of active region loops. Implications for a
variety of other studies, including the response of active region loops to impulsive energy deposition during solar flares,

are then examined in Section 4.

2. DERIVATION OF THE SCALING LAWS AND TEMPERATURE PROFILES

We begin by reviewing and, where appropriate, generalizing the work of Martens (2010) on the temperature structure

of active region loop “strands” in steady-state energy balance between heat input, radiative losses, and conductive
redistribution. The energy equation (cf. Equations (1) and (2) of Martens 2010) is

d

dz

(

κo T
δ dT

dz

)

+H P β Tα −
(

P

2kB

)2

χo T
−(2+γ) = 0 , (2)
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where z is the distance along the loop (measured upward from the chromospheric footpoint toward the loop apex

situated at a distance z = L), T (K) is the electron temperature, and P = 2nkBT (dyne cm−2) is the loop pressure

(assumed uniform). In addition, kB = 1.38 × 10−16 erg K−1 is Boltzmann’s constant, the dimensionless parameters

α and β characterize the temperature and pressure dependence of the loop heating function (the magnitude of which
is characterized by the parameter H), and χo and γ define respectively the magnitude and temperature dependence

of the optically thin radiative loss function Φ(T ) = χo T
−γ (for the temperature range under consideration, χo =

1.6 × 10−19 erg cm3 s−1 K1/2 and γ = 1/2; e.g., Cox & Tucker 1969). In Equation (2), we have generalized the

conduction term, both in its magnitude κo and in its temperature dependence T δ.

2.1. Collision-Dominated Conduction

For collision-dominated conduction, the pertinent mean free path is that appropriate to Coulomb collisions, viz.

λC =
(2kB)

2

2πe4Λ

T 2

n
, (3)

where e = 4.8×10−10 esu is the electronic charge and Λ ≃ 20 is the Coulomb logarithm (Spitzer 1962). The coefficient

of the temperature gradient in the energy equation (2) is thus

2nkB

√

2kBT

me
λC =

25/2 k
7/2
B

πm
1/2
e e4Λ

T 5/2 ≡ κoc T
δC , (4)

where me = 9.1× 10−28 g is the electron mass and we have made the identifications

κoc =
25/2 k

7/2
B

πm
1/2
e e4Λ

; δC =
5

2
. (5)

As shown by Martens (2010), the loop temperature profiles, as least for collision-dominated conduction, are insen-

sitive to the values of the parameters α and β that appear in Equation (2). We shall therefore take both α and β

to be zero, so that the volumetric heating is uniform. (Generalizing the analysis below to other values of α and β is

straightforward.) Introducing the dimensionless variables

η =

(

T

Tmax

)7/2

; x =
z

L
, (6)

where Tmax is the temperature at the loop apex, and the dimensionless parameters

ǫ =
2 κoc (2kB)

2 T 6
max

7χo P 2 L2
; ξ =

H (2kB)
2 T

5/2
max

χo P 2
(7)

(cf. Equations (3) through (8) of Martens 2010, but with P = 2nkBT replacing Martens’ Po = nT ), the energy

equation can be written in the form

ǫ η′′ = η−5/7 − ξ . (8)

This has a first integral

ǫ

2
η′

2
=

7

2
η2/7 − ξ η , (9)

where, following the argument of Martens (2010), we have used the boundary condition that the temperature gradient

vanish at the loop base, i.e., η′ = 0 when η = 0.

If collision-dominated conduction holds throughout the loop (as tacitly assumed by Martens 2010), then, by symmetry

at the loop apex, we can also set η′ = 0 when η = 1. This implies that

ξ = 7/2 , (10)

i.e., using Equation (7),

H =
7χo

8 k2B

P 2

T
5/2
max

. (11)
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Further, with ξ = 7/2, Equation (9) becomes

ǫ

2
η′

2
=

7

2

(

η2/7 − η
)

, (12)

which can be directly integrated to obtain η as an implicit function of x:

∫ η

0

dη
√

η2/7 − η
=

√

7

ǫ
x . (13)

Applying Equation (13) at the loop apex (x = 1, η = 1) gives

ǫ = 7

[

∫ 1

0

dη
√

η2/7 − η

]−2

. (14)

The integral in this expression can be evaluated analytically:

∫ 1

0

dη
√

η2/7 − η
=

∫ 1

0

η−1/7
(

1− η5/7
)−1/2

dη =
7

5

∫ 1

0

x1/5 (1− x)
−1/2

dx =
7

5
B

(

6

5
,
1

2

)

≃ 1.4× 1.79 ≃ 2.51 , (15)

where B(a, b) is the beta function. Using the definition of ǫ from Equation (7), Equation (14) becomes

2 κoc (2kB)
2 T 6

max

7χo P 2 L2
=

25

7

[

B

(

6

5
,
1

2

)]−2

(16)

(cf. Equation (23) of Martens 2010); i.e.,

Tmax =

(

25χo

8 κoc k2B

)1/6 [

B

(

6

5
,
1

2

)]−1/3

(PL)1/3 ≃ 1.3× 103(PL)1/3 , (17)

which is the so-called “first scaling law” (Equation (4.3) of Rosner et al. (1978); cf. Equation (31) of Bradshaw et al.

(2019)). Substituting this expression for Tmax into Equation (11) then yields the “second scaling law”:

H =
7χo

8 k2B

(

8 κoc k
2
B

25χo

)5/12 [

B

(

6

5
,
1

2

)]5/6

P 7/6 L−5/6 ≃ 1.2× 105 P 7/6 L−5/6 ; (18)

cf. Equation (4.4) of Rosner et al. (1978) and Equation (32) of Bradshaw et al. (2019).

2.2. Turbulence-Dominated Conduction

In a turbulent environment, heat transport by thermal conduction is now controlled by turbulent scattering, and the
collisional mean free path λC ∼ T 2/n is replaced by a turbulence mean free path λT . Following Bradshaw et al. (2019),

we here take λT to be a constant, independent of both density and temperature (the results below can straightforwardly

be generalized to other forms of λT ; cf. Emslie & Bian 2018). Correspondingly (Bradshaw et al. 2019) the coefficient

of the temperature gradient appearing in Equation (2) is

2nkB

√

2kBT

me
λT =

(2kB)
1/2 λT P

m
1/2
e

T−1/2 ≡ κoT T δT , (19)

where we have made the identifications

κoT =
(2kB)

1/2 λT P

m
1/2
e

; δT = −
1

2
. (20)

From Equations (5) and‘(20), we find the ratio and difference

κoT

κoc
=

πe4ΛλT P

4k3B
≡

λT P

cR
; δC − δT = 3 , (21)
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where cR ≡ 4k3B/πe
4Λ ≃ 3.15 × 10−12 erg cm−2 K−3 (Equation (11) of Bradshaw et al. 2019). While the change

in the magnitude of κo is significant, we shall see below that the difference in temperature exponents δC − δT = 3

(corresponding to the 3 powers of T associated with the change in the mean free path from λC ∝ T 2/n ∝ T 3/P to a

quantity λT that is independent of T ) is even more significant.
Inserting the quantities κoT and δT in the conduction term, the fundamental energy equation (2) becomes

d

dz

(

κoT T−1/2 dT

dz

)

+H −
(

P

2kB

)2

χo T
−5/2 = 0 . (22)

If we now introduce the dimensionless parameter and variable

ǫT =
2 κoT (2kB)

2 T 3
max

χo P 2 L2
; ζ =

(

T

Tmax

)1/2

≡ η1/7 , (23)

Equation (22) becomes

ǫT ζ′′ = ζ−5 − ξ , (24)

where the heating function parameter ξ is the same as before (Equation (7)). Applying the symmetrical boundary

condition ζ′ = 0 at the loop apex ζ = 1, we find the first integral

ǫT
2

ζ′
2
=

1

4

(

1−
1

ζ4

)

+ ξ (1− ζ) , (25)

which, similar to the collisional case (13), can be directly integrated to yield ζ as an implicit function of x:

∫ ζ

ζo

dζ
√

1
4

(

1− 1
ζ4

)

+ ξ (1− ζ)

=

√

2

ǫT
(x − ℓ) . (26)

It is important to note that we have here applied a lower boundary condition ζ = ζo at x = ℓ; extending the turbulent

solution to ζ = 0 is not possible1. Applying Equation (26) at the loop apex (x = 1, ζ = η = 1) gives

∫ 1

ζo

dζ
√

1
4

(

1− 1
ζ4

)

+ ξ (1− ζ)

=

√

2

ǫT
(1− ℓ) , (27)

to be compared with Equation (14) for the collisional case.

2.3. Temperature Profiles in Collisional and Turbulent Environments

Temperature profiles for both the collisional and turbulent cases can be obtained from Equations (13) and (26),

respectively. (In the latter case a value for the lower temperature To must be specified, and from this the value of ξ to
be used in Equation (26) then follows from Equation (27).) Figure 1 shows the form of the normalized temperature

(T/Tmax) ≡ η2/7 ≡ ζ2 as a function of normalized position x, measured upward from the loop base, with To/Tmax set

to the value 0.01 in the case of turbulence-dominated conduction. For turbulence-dominated conduction, the weaker

(in fact, inverse) dependence of the conduction coefficient κo on temperature leads to steeper (shallower) temperature
gradients at high (low) temperatures, compared to the case of collision-dominated conduction. Physically, this can be

explained as follows: in the face of reduced conductivity in the hot upper regions of the loop, the heat flux can only

transport excess energy (heating - radiation) from the corona by steepening the temperature gradient. This reduced

flux of energy entering the lower (and now more conductive than in the collisional case) atmosphere can be supported

by a much shallower temperature gradient in the lower regions of the loop.

1 In particular the boundary condition ζ = ζ′ = 0 at x = 0 used in the collisional case clearly cannot be applied, as is evident from
Equation (25). In the notation of Martens (2010) (cf. his Equation (8)), the value of µ appropriate to turbulent conduction is µ = −5,
rather than the µ = −5/7 appropriate to collisional conduction. Thus, although there are no singularities in the collisional solution – a fact
explicitly noted by Martens (2010) after his Equation (13) – such singularities do appear in the case of turbulence-dominated conduction.
An alternative way of looking at this is that Martens’ Equation (11) gives ξ = 1/(µ+1) = 7/2 for collisional conduction, but an impossible
(negative) value ξ = −1/4 for turbulent conduction.
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Figure 1. Normalized temperature profiles for different values of δ, the temperature index of the thermal conduction coefficient.
The case δ = 2.5 corresponds to conduction dominated by collisional transport, while the case δ = −0.5 corresponds to turbulent
transport (Equations (5) and (20), respectively.) The case δ = 1.0 is also shown to illustrate how the profiles depend on the value
of δ. The turbulent (δ = −0.5) solution applies only down to a lower boundary temperature To (see remarks after Equation (26)),
here taken to be 0.01 × the peak loop temperature Tmax.

In contrast to the results of Martens (2010), which showed (his Figure 3) that the loop temperature profiles were
largely independent of the value of the parameter α (the temperature dependence of the loop heating rate – Equa-

tion (7)) – the results of Figure 1 show that the loop temperature profile is very sensitive to the value of δ; i.e., to the

nature of the thermal conductive transport term.

2.4. Hybrid Collisional-Turbulent Loop Model

For low values of the temperature (i.e., near the base of the loop), the ratio of collisional to turbulent mean free paths

R ≡ λC/λT ≪ 1, and hence the usual assumption of collision-dominated thermal conduction is valid. However, at the
high temperatures and low densities found near the loop apex, the collisional mean free path λC is much larger2 (e.g.,

for T = 3 × 106 K and n = 109 cm−3, λC ≃ 2 × 108 cm), so that for turbulent mean free paths λT smaller than this,

conductive transport is driven predominantly by turbulent scattering. A physically-correct loop model thus requires

the merging of a collision-dominated conduction profile at low temperatures with a turbulence-dominated conduction

profile at higher temperatures.
The base temperature To (and hence value of ζo; Equations (26) and (27)) associated with turbulent conduction

solution can now be given a physical significance: it is the temperature at which the collisional and turbulent mean

free paths are comparable; i.e., λT = λC (T = To). Since the collisional mean free path scales as T 2/n ∼ T 3/P , for a

uniform pressure loop

λC(To) = λC(T = Tmax)

(

To

Tmax

)3

. (28)

But, by definition of the interface temperature To, λC(To) = λT ; thus

λT

λC(T = Tmax)
=

(

To

Tmax

)3

, (29)

2 It is interesting to note that the expansion parameter λ/L, commonly called the Knudsen number, must, by definition, be small for a fluid
(rather than particle-based) treatment of thermal conductive transport to be valid. Collisional path lengths of this magnitude for thermal
electrons thus imply that common formulations of thermal conduction in the fluid limit have often been applied beyond their limits of
applicability.
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so that the value of ζo = (T/Tmax)
1/2 corresponding to the base of the turbulent region is

ζo =

(

λT

λC(T = Tmax)

)1/6

. (30)

Similarly, the collision-dominated solution (13) is valid from η = 0 up to a value

ηo ≡ ζ7o =

(

λT

λC(T = Tmax)

)7/6

. (31)

Using Equation (3) for the collisional mean free path λC gives

ηo =

(

2πe4ΛnλT

4k2BT
2
max

)7/6

=

(

πe4ΛλT P

4k3BT
3
max

)7/6

=

(

κoT

κoc T 3
max

)7/6

=

(

λT P

cR T 3
max

)7/6

, (32)

(where we have used Equation (21)), and hence to an interface temperature

To =

(

λT P

cR

)1/3

. (33)

The value of the interface temperature To, that marks the upper/lower levels of the collisional/turbulent domains,

respectively, is thus set by the values of the loop pressure P and the turbulent scattering length λT .

In summary, the temperature profile for a collisional-turbulent hybrid physical model is given by Equations (9)

and (25), viz.

ǫ

2
η′

2
=

7

2
η2/7 − ξ η ; η ≤ ηo

ǫT
2

ζ′
2
=

1

4

(

1−
1

ζ4

)

+ ξ (1− ζ) ; ζ ≥ ζo = η1/7o , (34)

where η = (T/Tmax)
7/2, ζ = (T/Tmax)

1/2, and the interface value ηo is given by Equation (32).

The value of the dimensionless parameter ξ can no longer be obtained by appealing to the condition ζ′ = 0 at ζ = 1,

similar to the condition used in obtaining the result (10) for a wholly collisional solution. Instead, its value is obtained
by matching the conductive flux at the interface between the collisional solution in the lower part of the loop and the

turbulent solution in the upper part of the loop. At this interface, the temperature variable η = ηo, and the collisional

and turbulent fluxes are given by

Fcoll =
2

7
κoc

T
7/2
max

L
η′o ; Fturb = 2 κoT

T
1/2
max

L
ζ′o , (35)

respectively. Equating the (square of) these fluxes at η = ηo (ζ = ζo ≡ η
1/7
o ) and using the temperature profile

solutions (34) for each part of the loop gives

ǫT
ǫ

(

7

2
η2/7o − ξ ηo

)

= 49

(

κoT

κocT 3
max

)2
[

1

4

(

1−
1

η
4/7
o

)

+ ξ
(

1− η1/7o

)

]

. (36)

But, from the definitions of ǫ and ǫT (Equations (7) and (23)),

ǫT
ǫ

= 7

(

κoT

κocT 3
max

)

= 7 η6/7o , (37)

where we have used Equation (32). Hence

7

2
η2/7o − ξ ηo = 7 η6/7o

[

1

4

(

1−
1

η
4/7
o

)

+ ξ
(

1− η1/7o

)

]

. (38)
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Grouping the terms involving the parameter ξ results in an explicit expression for that parameter:

ξ =
7

2

η
2/7
o − 1

2 η
6/7
o

(

1− η
−4/7
o

)

ηo + 7 η
6/7
o

(

1− η
1/7
o

) =
7

4 η
4/7
o

(

3− η
4/7
o

7− 6η
1/7
o

)

. (39)

As the collisional/turbulent interface level approaches the loop apex (ηo → 1), ξ → 7/2, consistent with the value

obtained earlier (Equation (10)) for the wholly collisional solution. On the other hand, when turbulent conduction

dominates throughout most of the loop (corresponding to small values of ηo), ξ → 3/4η
4/7
o . The value of ξ therefore

increases as ηo decreases, i.e., as more and more of the loop is dominated by turbulent scattering.

Such an increased value of ξ corresponds (Equation (7)) to a greater amount of heat input H . As we shall see
in Section 3, such an increased amount of heat input is necessary to sustain the greater amount of radiative losses

from the loop, especially from the lower-temperature regions of the loop, which have an increased amount of emitting

material in a given temperature range, due to the shallower temperature gradients in that region (cf. Figure 1).

The vanishing of the left-hand side of each of the energy equations (8) and (24) (corresponding to the wholly
collisional and wholly turbulent cases, respectively) corresponds to the point where heat input and radiative losses

balance locally, and hence the divergence of the conductive flux changes sign, i.e., when thermal conduction transitions

from a cooling mechanism to a heating mechanism. Using Equations (6) and (23), we find that the left-hand sides of

both energy equations equal zero when

θ ≡
Ttransition

Tmax
= ξ−2/5 ; (40)

this result follows straightforwardly from the general energy equation (2) and the definition of ξ (Equation (7)).

For the wholly collisional case, ξ = 7/2 (Equation (10)) and so θ ≃ 0.6; for temperatures above this “transition

temperature” conduction is a cooling term balancing the excess heating over radiation, while for temperatures below
the transition temperature conduction is a heating term supplying additional energy to be radiated away. As the

role of turbulence in the upper regions of the loop becomes more pronounced, the value of the heating parameter ξ

increases and Equation (40) then shows that the value of θ decreases below its collisional value ≃ 0.6.

In summary, the more predominant role of turbulence associated with low values of the turbulent mean free path
λT leads to:

• lower values of the collisional/turbulent interface temperature (Equation (33)); and

• higher values of the heating parameter ξ (Equation (39)).

Consistent with this higher level of overall heating, thermal conduction acts as a cooling mechanism throughout a
greater fraction of the loop, which in turn leads to

• lower values of the heating/cooling transition temperature θ (Equation (40)).

These trends are depicted pictorially in Figure 2, which shows the behavior of the heating parameter ξ (Equa-
tion (39)), the collisional/turbulent interface position ℓ (measured upward from the loop footpoint and normalized to

the loop half-length L; Equations (26) and (49)), and the cooling/heating boundary temperature θ (Equation (40)),

all as functions of the quantity ηo (Equation (32)) that parameterizes the temperature of the collisional/turbulent

interface. As ηo → 1, more and more of the loop is governed by collision-dominated conduction, and ξ → 7/2 (Equa-
tion (10)), ℓ → 1, and the transition temperature variable θ → (7/2)−2/5 ≃ 0.6. At the other extreme, as ηo → 0,

more and more of the loop becomes governed by conductive heat transport driven by turbulent scattering; the heating

parameter grows like η
−4/7
o (Equation (39)), the value of ℓ approaches zero, and the transition temperature variable θ

slowly approaches zero like ξ−2/5 = η
8/35
o .

Using Equations (6) and (7) for ηo and ξ, respectively, in the relation ξ = 3/4η
4/7
o gives

H (2kB)
2 T

5/2
max

χo P 2
=

3

4

(

To

Tmax

)−2

, (41)
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Figure 2. Variation of the heating parameter ξ (Equation (39)), the collisional/turbulent interface position ℓ (Equations (26)
and (49)), and the cooling/heating boundary temperature θ (Equation (40)), all as functions of the quantity ηo (Equation (32)),
that parameterizes the temperature of the collisional/turbulent interface. Asymptotic behaviors of all three parameters as
ηo → 0 and ηo → 1 are discussed in the text.

or

H =
3χoP

2

16(kBTo)2 T
1/2
max

. (42)

Comparison with the equivalent result (11) for the collisional case shows how the loop base temperature To now
explicitly plays a role in determining the magnitude of the volumetric heating function H (cf. Bradshaw et al. 2019).

The relation ξ = 3/4η
4/7
o also implies that as ηo → 0, ξ → ∞, so that the denominator in the integrand in Equation (27)

is dominated by the second term under the radical. Substituting ζo = 0 and ℓ = 0 in this limit then gives

√

2

ǫT
=

1√
ξ

∫ 1

0

dζ√
1− ζ

=
2√
ξ

, (43)

from which

ǫT =
ξ

2
=

3

8 η
4/7
o

. (44)

Using Equations (6) and (23), this may be written as

2 κoT (2kB)
2 T 3

max

χo P 2 L2
=

3

8

(

Tmax

To

)2

, (45)

and substituting for κoT from Equation (21) gives the “first scaling law”

Tmax =
3χocR

64 κoc λT (kBTo)2
P L2 ≃

7.3× 105

λT T 2
o

P L2 . (46)

This result improves (by a factor of 3) the approximate scaling law of Bradshaw et al. (2019) (their Equation (23)).

Then using Equation (46) for Tmax in Equation (42) gives the “second scaling law”

H =

(

3 κoc χoλT

4cR

)1/2
1

kBTo
P 3/2 L−1 ≃

1.9× 109 λ
1/2
T

To

P 3/2

L
, (47)



12

which improves (by a factor
√
3) the approximate scaling law derived in Bradshaw et al. (2019) (their Equation (24)),

and again highlights the role played by the base temperature To in driving the volumetric heating rate H . In a future

work, we intend to critically compare the scaling law (46), and its collisional counterpart (17), with observations,

and we encourage others to do the same. Such comparisons will allow useful constraints to be made on the value of
the turbulence scale length λT (given reasonable estimates of the base temperature To), and then in turn, through

Equation (47), on the heating rate H .

We now have all the information needed to construct the temperature profile for the hybrid collisional/turbulent

model. For prescribed values of the quantities λT , P , and Tmax, the value of the interface temperature parame-

ter ηo follows from Equation (32), recalling that the constant cR ≃ 3.15 × 10−12 erg cm−2 K−3 (Equation (11)
of Bradshaw et al. 2019). Substituting this value of ηo in Equation (39) then gives the corresponding value of the

heating-rate-related quantity ξ (Equation (7)). Equations (34) can now be directly integrated to give the temperature

parameter η (Equation (6)) as an (implicit) function of the dimensionless position x:

∫ η

0

(

η2/7 − ξ η
)−1/2

dη=

√

7

ǫ
x ; 0 < x < ℓ

∫ η1/7

η
1/7
o

(

1

4

(

1−
1

ζ4

)

+ ξ (1− ζ)

)−1/2

dζ=

√

2

ǫT
(x − ℓ); ℓ < x < 1 . (48)

We can now apply these at the upper boundary of the collision-dominated domain (η = ηo; x = ℓ) and at the loop

apex (η = 1; x = 1), respectively, to obtain

∫ ηo

0

(

η2/7 − ξ η
)−1/2

dη=

√

7

ǫ
ℓ

∫ 1

η
1/7
o

(

1

4

(

1−
1

ζ4

)

+ ξ (1 − ζ)

)−1/2

dζ=

√

2

ǫT
(1− ℓ) (49)

for the lower (collision-dominated) and upper (turbulence-dominated) regions of the loop, respectively. Dividing these

two results gives

∫ ηo

0

(

η2/7 − ξ η
)−1/2

dη

∫ 1

η
1/7
o

(

1
4

(

1− 1
ζ4

)

+ ξ (1− ζ)
)−1/2

dζ

=

√

7

2

√

ǫT
ǫ

ℓ

1− ℓ
=

7√
2
η3/7o

ℓ

1− ℓ
, (50)

where in the last equality we have used Equation (37). This result provides the value of the (dimensionless) boundary
position ℓ as a function of the interface temperature variable ηo, determined straightforwardly from the physical

parameters of the loop using Equation (32). The value of the scaling parameters ǫ and ǫT (Equations (7) and (23),

respectively) then follow from the first and second of Equations (49), respectively, and, finally, the temperature profile

η(x) then follows from solving Equations (48) in each segment.

Figure 3 shows the resulting temperature profiles, for various values of the turbulent mean free path λT , and for a
loop with apex temperature Tmax = 3×106 K and pressure P = 3.0 dyne cm−2. The values of the (normalized) position

ℓ at which the conduction transitions from collision-dominated (small x) to turbulence-dominated (large x) are shown

as vertical lines in the Figure. As λT decreases, so does the value of ℓ, corresponding to the turbulence-dominated

region extending over an ever-increasing part of the loop. And, as we noted in the results for a loop in which turbulent
scattering dominates throughout (Figure 1), the general tendency is for loops with a lower value of λT to have steeper

temperature gradients at high temperatures, and shallower temperature gradients at low temperatures.

3. DIFFERENTIAL EMISSION MEASURE PROFILES

The differential emission measure (cm−5 K−1) is defined as

DEM(T ) = n2 dz

dT
=

P 2

(2kB)2 T 2

dz

dT
. (51)
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Figure 3. Normalized temperature profiles for the hybrid physical model, with Tmax = 3× 106 K, P = 3.0 dyne cm−2, and the
values of λT indicated. The vertical dashed lines indicate the normalized positions ℓ of the interface between the collisional and
turbulent regimes; for x < ℓ conduction is collision-dominated, while for x > ℓ it is turbulence-dominated.

It measures the “radiating potential” in a given temperature range, such that convolution of the DEM(T ) profile with

the emissivity function G(λ;T ) expressing the emission spectrum per unit wavelength λ at temperature T gives the

total emitted spectrum per unit wavelength:

I(λ) =

∫ ∞

T=0

DEM(T )G(λ;T ) dT . (52)

Using Equation (6), Equation (51) can be written as

DEM(T [η]) =
P 2 L

4 k2B T 3
max

[

7

2

η1/7

η′

]

, (53)

where η′ denotes the derivative of η with respect to the dimensionless distance x = z/L, and so is readily evaluated

from the η(x) profiles obtained above. At the coolest temperatures in the loop, the collision-dominated Equation (12)

applies, and can further be well approximated as

η′ =

√

7

ǫ
η1/7 , (54)

so that the DEM tends to a constant value

DEM =

√

7 ǫ

4

P 2 L

4 k2B T 3
max

=

√

κoc

8χo k2B
P ≃ 8× 1021 P , (55)

where we have used Equation (7). This relation also, obviously, applies3 for loops in which conduction is collision-

dominated throughout (e.g., Martens 2010). To the best of our knowledge, this predicted (constant) behavior of DEM
at low temperatures in active region loops for which classical (Spitzer 1962) conduction applies has not been noted

previously in the literature.

Figure 4 shows the DEM structures for several values of the turbulence mean free path λT , scaled by the constant

term in Equation (53). For classical conduction, the high power of T in the thermal conduction coefficient κoc forces very
steep temperature gradients (and so relatively small amounts of material per unit temperature) at low temperatures

3 Although Martens (2010) did not provide DEM profiles corresponding to his loop temperature profiles, those temperature profiles (his
Figure 3) were so similar that we would expect the DEM profiles to be very insensitive to the value of the parameter α, the temperature
dependence of the loop heating rate. Thus observations of spectral line intensities would not provide a clear indicator of the value of α.
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Figure 4. Normalized differential emission measure profiles for a physical model with collision-dominated conduction in the
lower part of the loop and turbulence-dominated conduction in the upper portion, with Tmax = 3× 106 K, P = 3.0 dyne cm−2,
and the values of λT indicated. The corresponding scaled CHIANTI DEM profile inferred from observations is shown for
comparison (see text for details).

(Figure 1). However, for models that include significant turbulent conduction (whether throughout the entire loop or

only in the upper regions), the temperature profile is much flatter at low temperatures (Figures 1 and 3, respectively).

This, combined with the increased density at such low temperatures (n ∝ P/T ), gives a significant rise in DEM as the

temperature decreases. It should be noted that even though the lower portion of the loop is collision-dominated, the

requirement that it continuously link to the turbulence-dominated upper part of the loop changes the DEM structure
from that corresponding to a loop in which collisional conduction dominates throughout.

Such an enhancement in the differential emission measure at low temperatures compared to the values predicted using

classical heat conduction is indeed ubiquitously observed (e.g., Raymond & Doyle 1981). Landi et al. (2002) have used

data from the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer (Wilhelm et al. 1995) on
board the Solar and Heliospheric Observatory (SoHO) to deduce empirical DEM curves for different spectral lines;

sample DEM results are shown in their Figures 2 through 5. These empirical DEM curves generally have a concave

upward structure with a pronounced minimum, similar to the model DEM results in Figures 4 and 5 (and, we note

parenthetically, completely inconsistent with the low-temperature DEM behavior of Equation (55) for a model loop in

which conduction is dominated by collisions throughout). Antiochos & Noci (1986) discuss the failure of static4 (and
steady-state flow) coronal loop models to reproduce this observed sharp rise in the emission measure at temperatures

from 100,000 K down to 20,000 K, despite the models and observations being in good agreement above 100,000 K. They

note that although several solutions to this inconsistency have been proposed, these all rely on different mechanisms

operating above and below 100,000 K, with no compelling physical reason why this should be so, or why 100,000 K is
the critical temperature. Another possibility noted is that some key physics (such as kinetic effects) is missing from

static/steady models, but Antiochos & Noci (1986) state that “· · · it has yet to be demonstrated that the kinetic

effects are sufficient to account for all of the large discrepancy between the observed and the predicted line fluxes.”

A possible explanation for the excess of cool material is that individual loop strands undergo heating and cooling

cycles, with the heating and cooling timescales being such that a significant amount of cool material is always present.
However, the results in Section 3 show that a relatively straightforward physical mechanism, namely the suppression

of thermal conduction by turbulent scattering at sub-collisional (kinetic) scales, results naturally in changes to the

overall loop temperature profile, and hence the differential emission measure at low temperatures, that are much more

consistent with observations.

4 In this context, “static” models must also be interpreted as those which include time-dependent heating that repeats on short timescales
(high-frequency heating - see, e.g., Mulu-Moore et al. 2011).
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An overall DEM profile for an active region loop has been computed by K. Dere, based on the average active region

model atmosphere of Vernazza & Reeves (1978), with an assumed uniform pressure of nT = 3 × 1015 cm−3 K (i.e.,

P ≃ 0.8 dyne cm−2) and a maximum temperature Tmax ≃ 106.2 K. To compare this DEM profile with those of the

models (Figure 4) requires that we calculate the scaling quantity P 2L/4k2BT
3
max, and this requires a value for the loop

half-length L. Using the Rosner et al. (1978) scaling law (17) with P = 0.8 dyne cm−2 and Tmax = 106.2 K yields a

fairly large loop half-length L ≃ 2 × 109 cm. However, given that the scaling law (17) is not valid for models that

incorporate turbulent conduction, we used a lower value L = 7× 108 cm (10 arcseconds) and a value Tmax = 3× 106 K

(to match5 the model calculations), resulting in a DEM scaling quantity P 2L/4k2BT
3
max = 2 × 1020. The CHIANTI

DEM profile, scaled (downward) by this factor, is superimposed on the model results of Figure 4. We see that the
value of the minimum in the DEM profile is close to that of the models; however, the models predict a more localized

minimum at a somewhat larger temperature.

Figure 5. Hydrostatic equilibrium solutions for turbulence with spatially uniform scales λT = 100 km (red), 10 km (green),
and 1 km (blue). Each solution was found by relaxation from an initially collisional state (λT = ∞; black). The dashed and
dot-dashed lines shows the empirical CHIANTI differential emission measure curves for the quiet Sun and for active regions;
see text for discussion.

Both as a “reality check” on the above modeling, and to form a basis for comparison, we also calculated the tem-

perature structure of loops by numerically solving the energy equation (2) with a continuously varying conduction

term representative of the local conditions at each point. Figure 5 shows results obtained using the HYDRAD code
(Bradshaw & Cargill 2013), which solves the multi-fluid hydrodynamic equations in the field-aligned direction, allow-

ing for changes in the flux tube cross-section and for gravitational acceleration, and including key plasma physics

processes such as thermal conduction, viscous interactions, inter-species collisions, and radiation. The relative impor-

tance of collisions and turbulence to thermal conduction is allowed to change continuously, depending upon the local
collisionality of the plasma, via the relations

ν = νC + νT ;
1

λ
=

1

λC
+

1

λT
(56)

for the scattering frequencies ν and corresponding mean free paths λ, with the conduction coefficient κ proportional to

λ (cf. Equations (4) and (20)). The field-aligned electron temperature and number density are shown in the top two

5 Note that with P = 0.8 dyne cm−2 and L = 7× 108 cm, the Rosner et al. (1978) scaling law (17) gives a rather low (quiet-Sun-level) peak
temperature Tmax ≃ 1.2× 106 K. For comparison, however, the fully-turbulent scaling law (46), with P = 0.8 dyne cm−2, L = 7× 108 cm,
base temperature To = 105 K, and a turbulent scale length λT = 107 cm (100 km) gives Tmax ≃ 3 × 106 K, consistent with the value
used. Lower values of λT and/or To yield (Equation (46)) even higher values for Tmax, so that the choice Tmax = 3× 106 K would now fall
between the peak temperatures appropriate to the fully-collisional and fully-turbulent regimes, respectively.
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panels for a range of (uniform) values of λT . The upper-left plot shows that for turbulent mean free paths less than

1 km, unreasonably high coronal temperatures of order 109 K; this effectively imposes a lower limit on the value of λT .

The lower-left plot shows values of the ratio R = λC/λT (cf. Equations (3) and (19)) throughout the loop, showing

that thermal conduction can be hugely suppressed (by factors as large as 1010) in the hot, tenuous corona, whereas
the footpoint regions are still strongly collision-dominated. The lower-right plot shows the DEM profiles obtained,

with the CHIANTI active-region and quiet-Sun DEM profiles superimposed. The HYDRAD models produce a DEM

profile that is characterized by a rather broad minimum compared to the empirical CHIANTI profile, with significant

(up to ∼1.5 orders of magnitude) excess emission in the range 4.8∼< logT ∼< 5.8. This is in contrast to the analytic

models of Figure 4, which are characterized by a much narrower minimum than the empirical CHIANTI profile. We
emphasize, however, that the general excess of emission at relatively cool temperatures is a feature common to all

three models: the analytic models of Figure 4, the numerical models of Figure 5, and the empirical CHIANTI profile,

and that this is a feature that the collision-dominated conduction result (Equation (55)) completely fails to reproduce.

4. SUMMARY AND CONCLUSIONS

We have seen that the (likely) presence of turbulence in active region solar loops fundamentally changes the char-

acteristics of heat transport by thermal conduction, affecting not only the loop scaling laws Bradshaw et al. (2019)

but also the temperature structure throughout the loop. Compared to temperature profiles (Martens 2010) based
on classical (i.e., collision-driven) conduction (Spitzer 1962), temperature profiles in loops where conductive heat

transport is dominated by turbulent scattering have steeper temperature gradients in the high corona and shallower

temperature gradients in the low corona (Figure 1). Physically, this is a result of the much weaker dependence of

the heat conduction coefficient κ on temperature (Equations (5) and (20)). Since the differential emission measure is
inversely proportional to the temperature gradient, the DEM profiles in loops where turbulent scattering dominates

the thermal heat transport, show significant enhancements at low temperatures compared to loops where collisional

scattering dominates the thermal heat transport (Figure 4).

In practice the temperature and density variation along a real loop will likely result in a situation where turbulence-

driven conduction dominates at high temperatures and collision-dominated conduction dominates at low temperatures.
Consideration of such a “hybrid” loop model shows, both through matching of collisional and turbulent solutions

(Figure 3), and through more precise numerical modeling involving a continuously variable ratio of the collisional to

turbulent mean free paths (Figure 5), that the low-temperature enhancements in the DEM profile are still present,

even though heat transport in the lower atmosphere is still dominated by Coulomb collisions. Such enhancements
relative to the predictions of a collision-dominated heat transport model (cf. Martens 2010) are indeed ubiquitously

observed (e.g., Raymond & Doyle 1981). This not only strongly indicates that turbulence plays a key role in thermal

energy transport in active region loops, but also gives a probe to assess the value of the turbulence mean free path λT .

We have here demonstrated that the turbulent suppression of energy transport by thermal conduction, and the

corresponding changes in the loop temperature profile, results in a DEM profile that rises at low temperatures,
broadly consistent with observations, and in much better agreement with observations than the DEM profile produced

by a model which incorporates collision-dominated conduction throughout. This explanation for the enhanced low-

temperature DEM is both simple and compelling, utilizes plasma conditions consistent with observations, and does

not need to invoke external phenomena such as type II spicules (Klimchuk 2012) and low-lying cool loops (although
these phenomena may still, of course, contribute a component to the DEM in some regions). Our results also suggest

a powerful test for the presence of turbulence in coronal loops, in addition to observations of individual spectral line

profiles, which directly reveal the presence of turbulence through excess Doppler broadening.

Based on the encouraging DEM profiles obtained by incorporating turbulence-driven conduction in the upper levels

of active region loops, we encourage the use of active region loop structures such as those derived here to model the
surrounding atmosphere in models of energy release and transport in solar flares. We would also urge that such models

incorporate a thermal conduction term that includes a level of turbulence consistent with that defining the background

atmosphere.

The results of the present work are based on a turbulent mean free path λT that is, following Equation (17) of
Bian et al. (2016), assumed to be independent of velocity. However, it is also possible that the turbulent scattering

mean free path does depend on velocity, such as the parametric power-law form λT ∝ vα used in Equation (7) of

Bian et al. (2016). Emslie & Bian (2018) have studied the form of the heat conduction term for various power-law

indices α, and Allred et al. (2022) have further shown that observed profiles for the Fe XXI 1354 Å spectral line
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observed by the Interface Region Imaging Spectrograph (IRIS; De Pontieu et al. 2014) are consistent with a value

α = 4 (and a conduction suppression ratio R = λC(v = vthermal)/λT ≃ 1). (Interestingly, for such a value of α the

velocity dependencies of the collisional and turbulent mean free paths have identical λ ∝ v4 forms, so that the effect

of introducing turbulence is simply to scale the mean free path downward: 1/λ = 1/λC + 1/λT = (1 + R)/λC , so
that λ = λC/(1 + R) = λC/2.) Future modeling incorporating such a velocity-dependent λT , and comparison of the

resulting differential emission measure profiles with those deduced from observations, is a clear next step to quantifying

and parameterizing the role of turbulence in determining the thermodynamic structure of the active Sun.
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